Spaces not mappable onto $[0,1]$

Jaroslav Šupina

Institute of Mathematics

Faculty of Science of P. J. Šafárik University
$1^{\text {st }}$ of February 2012

Hausdorff topological space - X, Y, \ldots

Definitions

J. Haleš, 2005

A topological space X is an nCM-space (non-Continuously Mappable space) if X cannot be continuously mapped onto [0,1].

- J. Isbell, 1965, 1969; A.W. Miller, 1983

A topological space X is an nBM-space (non-Borel Mappable space) if X cannot be mapped onto $[0,1]$ by any Borel map.
A uniform space X is an nUCM-space (non-Uniformly Continuously Mappable space) X cannot be uniformly continuously mapped onto $[0,1]$. © P. Corazza, 1989

Definitions

J. Haleš, 2005

A topological space X is an nCM-space (non-Continuously Mappable space) if X cannot be continuously mapped onto [0,1].

- J. Isbell, 1965, 1969; A.W. Miller, 1983

A topological space X is an nBM-space (non-Borel Mappable space) if X cannot be mapped onto $[0,1]$ by any Borel map.
A uniform space X is an nUCM-space (non-Uniformly Continuously Mappable space)
uniform space X

$$
X \text { is an } n B M \text {-space } \rightarrow X \text { is an nCM-space } \rightarrow X \text { is an } n U C M-\text { space }
$$

Definitions

J. Haleš, 2005

A topological space X is an nCM-space (non-Continuously Mappable space) if X cannot be continuously mapped onto $[0,1]$.

- J. Isbell, 1965, 1969; A.W. Miller, 1983

A topological space X is an nBM-space (non-Borel Mappable space) if X cannot be mapped onto $[0,1]$ by any Borel map.
A uniform space X is an nUCM-space (non-Uniformly Continuously Mappable space) if X cannot be uniformly continuously mapped onto $[0,1]$.

- P. Corazza, 1989

Definitions

J. Haleš, 2005

A topological space X is an nCM-space (non-Continuously Mappable space) if X cannot be continuously mapped onto $[0,1]$.

- J. Isbell, 1965, 1969; A.W. Miller, 1983

A topological space X is an nBM-space (non-Borel Mappable space) if X cannot be mapped onto $[0,1]$ by any Borel map.
A uniform space X is an nUCM-space (non-Uniformly Continuously Mappable space) if X cannot be uniformly continuously mapped onto $[0,1]$.

- P. Corazza, 1989
uniform space X
X is an nBM-space $\rightarrow X$ is an nCM-space $\rightarrow X$ is an nUCM-space

Definitions

J. Haleš, 2005

A topological space X is an nCM-space (non-Continuously Mappable space) if X cannot be continuously mapped onto $[0,1]$.

- J. Isbell, 1965, 1969; A.W. Miller, 1983

A topological space X is an nBM-space (non-Borel Mappable space) if X cannot be mapped onto $[0,1]$ by any Borel map.
A uniform space X is an nUCM-space (non-Uniformly Continuously Mappable space) if X cannot be uniformly continuously mapped onto $[0,1]$.

- P. Corazza, 1989
uniform space X
X is an nBM-space $\rightarrow X$ is an nCM-space $\rightarrow X$ is an nUCM-space
- preserved by appropriate maps

$$
\operatorname{non}(n B M-\text { space })=\operatorname{non}(\text { nCM-space })=\operatorname{non}(\text { nUCM-space })=\mathfrak{c}
$$

Theorem (Miller, 1983)
 The theon. TVC relative to ZFC.

Corollary (Corazza, 1989)

The theow. 2 Red
relative to ZFC.

$$
\operatorname{non}(\mathrm{nBM}-\text { space })=\operatorname{non}(\mathrm{nCM}-\text { space })=\operatorname{non}(\mathrm{nUCM}-\text { space })=\mathfrak{c}
$$

Theorem (Miller, 1983)

The theory ZFC $+\mathfrak{c}=\aleph_{2}+\left(\forall A \subseteq{ }^{\omega} 2\right)(A$ is an nCM-set $\equiv|A|<\mathfrak{c})$ is consistent relative to ZFC .
\square
The theory ZFC relative to ZFC.
nBM-set of cardinality $\mathfrak{c}-\mathbf{C H}, \mathbf{M A}, \mathfrak{p}=\mathfrak{c}, \mathfrak{b}=\mathfrak{c}, \mathrm{MA}$ (countable)

$$
\operatorname{non}(n B M-s p a c e)=\operatorname{non}(n C M-s p a c e)=\operatorname{non}(n U C M-\text { space })=\mathfrak{c}
$$

Theorem (Miller, 1983)

The theory ZFC $+\mathfrak{c}=\aleph_{2}+\left(\forall A \subseteq{ }^{\omega} 2\right)(A$ is an nCM-set $\equiv|A|<\mathfrak{c})$ is consistent relative to ZFC.

Corollary (Corazza, 1989)

The theory ZFC $+\mathfrak{c}=\aleph_{2}+(\forall A \subseteq \mathbb{R})(A$ is an nUCM-set $\equiv|A|<\mathfrak{c})$ is consistent relative to ZFC.
nBM-set of cardinality $\mathrm{c}-\mathrm{CH}, \mathrm{MA}, \mathrm{p}=\mathrm{c}, \mathrm{b}=\mathrm{c}, \mathrm{MA}$ (countable)

$$
\operatorname{non}(n B M-s p a c e)=\operatorname{non}(n C M-s p a c e)=\operatorname{non}(n U C M-\text { space })=\mathfrak{c}
$$

Theorem (Miller, 1983)

The theory ZFC $+\mathfrak{c}=\aleph_{2}+\left(\forall A \subseteq{ }^{\omega} 2\right)(A$ is an nCM-set $\equiv|A|<\mathfrak{c})$ is consistent relative to ZFC.

Corollary (Corazza, 1989)

The theory ZFC $+\mathfrak{c}=\aleph_{2}+(\forall A \subseteq \mathbb{R})(A$ is an nUCM-set $\equiv|A|<\mathfrak{c})$ is consistent relative to ZFC.
nBM-set of cardinality $\mathfrak{c}-\mathbf{C H}$, MA, $\mathfrak{p}=\mathfrak{c}, \mathfrak{b}=\mathfrak{c}, \mathbf{M A}($ countable),\ldots

$$
\operatorname{non}(\mathrm{nBM}-\text { space })=\operatorname{non}(\mathrm{nCM}-\text { space })=\operatorname{non}(\mathrm{nUCM}-\text { space })=\mathfrak{c}
$$

Theorem (Miller, 1983)

The theory ZFC $+\mathfrak{c}=\aleph_{2}+\left(\forall A \subseteq{ }^{\omega} 2\right)(A$ is an $\mathrm{nCM}-$ set $\equiv|A|<\mathfrak{c})$ is consistent relative to ZFC .

Corollary (Corazza, 1989)

The theory ZFC $+\mathfrak{c}=\aleph_{2}+(\forall A \subseteq \mathbb{R})(A$ is an nUCM-set $\equiv|A|<\mathfrak{c})$ is consistent relative to ZFC.
nBM-set of cardinality $\mathfrak{c}-\mathbf{C H}, \mathbf{M A}, \mathfrak{p}=\mathfrak{c}, \mathfrak{b}=\mathfrak{c}, \mathbf{M A}($ countable $), \ldots$

- $\left\langle f_{\xi}: \xi<\mathfrak{c}\right\rangle$ be a bijective enumeration of $\{f: \mathbb{R} \rightarrow[0,1] ; f(\mathbb{R})=[0,1], f$ Borel $\}$

$$
\operatorname{non}(\mathrm{nBM}-\text { space })=\operatorname{non}(\mathrm{nCM}-\text { space })=\operatorname{non}(\mathrm{nUCM}-\text { space })=\mathfrak{c}
$$

Theorem (Miller, 1983)

The theory ZFC $+\mathfrak{c}=\aleph_{2}+\left(\forall A \subseteq{ }^{\omega} 2\right)(A$ is an $\mathrm{nCM}-$ set $\equiv|A|<\mathfrak{c})$ is consistent relative to ZFC .

Corollary (Corazza, 1989)

The theory ZFC $+\mathfrak{c}=\aleph_{2}+(\forall A \subseteq \mathbb{R})(A$ is an nUCM-set $\equiv|A|<\mathfrak{c})$ is consistent relative to ZFC.
nBM-set of cardinality $\mathfrak{c}-\mathbf{C H}, \mathbf{M A}, \mathfrak{p}=\mathfrak{c}, \mathfrak{b}=\mathfrak{c}, \mathbf{M A}($ countable $), \ldots$

- $\left\langle f_{\xi}: \xi<\mathfrak{c}\right\rangle$ be a bijective enumeration of $\{f: \mathbb{R} \rightarrow[0,1] ; f(\mathbb{R})=[0,1], f$ Borel $\}$
- $\alpha<\mathfrak{c}:\left\{x_{\xi} ; \xi<\alpha\right\},\left\langle P_{\xi}: \xi<\alpha\right\rangle$

$$
\operatorname{non}(\mathrm{nBM}-\text { space })=\operatorname{non}(\mathrm{nCM}-\text { space })=\operatorname{non}(\mathrm{nUCM}-\text { space })=\mathfrak{c}
$$

Theorem (Miller, 1983)

The theory ZFC $+\mathfrak{c}=\aleph_{2}+\left(\forall A \subseteq{ }^{\omega} 2\right)(A$ is an nCM-set $\equiv|A|<\mathfrak{c})$ is consistent relative to ZFC .

Corollary (Corazza, 1989)

The theory ZFC $+\mathfrak{c}=\aleph_{2}+(\forall A \subseteq \mathbb{R})(A$ is an nUCM-set $\equiv|A|<\mathfrak{c})$ is consistent relative to ZFC .
nBM-set of cardinality $\mathfrak{c}-\mathbf{C H}, \mathbf{M A}, \mathfrak{p}=\mathfrak{c}, \mathfrak{b}=\mathfrak{c}, \mathbf{M A}($ countable $), \ldots$

- $\left\langle f_{\xi}: \xi<\mathfrak{c}\right\rangle$ be a bijective enumeration of $\{f: \mathbb{R} \rightarrow[0,1] ; f(\mathbb{R})=[0,1], f$ Borel $\}$
- $\alpha<\mathfrak{c}:\left\{x_{\xi} ; \xi<\alpha\right\},\left\langle P_{\xi}: \xi<\alpha\right\rangle$
- $\left\{f_{\alpha}^{-1}(a) ; a \in[0,1]\right\}$ is a family of \mathfrak{c} pairwise disjoint Borel sets

$$
\operatorname{non}(\mathrm{nBM}-\text { space })=\operatorname{non}(\mathrm{nCM}-\text { space })=\operatorname{non}(\mathrm{nUCM}-\text { space })=\mathfrak{c}
$$

Theorem (Miller, 1983)

The theory ZFC $+\mathfrak{c}=\aleph_{2}+\left(\forall A \subseteq{ }^{\omega} 2\right)(A$ is an nCM-set $\equiv|A|<\mathfrak{c})$ is consistent relative to ZFC.

Corollary (Corazza, 1989)

The theory ZFC $+\mathfrak{c}=\aleph_{2}+(\forall A \subseteq \mathbb{R})(A$ is an nUCM-set $\equiv|A|<\mathfrak{c})$ is consistent relative to ZFC.
nBM-set of cardinality $\mathfrak{c}-\mathbf{C H}$, MA, $\mathfrak{p}=\mathfrak{c}, \mathfrak{b}=\mathfrak{c}, \mathbf{M A}($ countable), \ldots

- $\left\langle f_{\xi}: \xi<\mathfrak{c}\right\rangle$ be a bijective enumeration of $\{f: \mathbb{R} \rightarrow[0,1] ; f(\mathbb{R})=[0,1], f$ Borel $\}$
- $\alpha<\mathfrak{c}:\left\{x_{\xi} ; \xi<\alpha\right\},\left\langle P_{\xi}: \xi<\alpha\right\rangle$
- $\left\{f_{\alpha}^{-1}(a) ; a \in[0,1]\right\}$ is a family of \mathfrak{c} pairwise disjoint Borel sets
- $a_{\alpha} \in[0,1]$ such that $P_{\alpha}=f_{\alpha}^{-1}\left(a_{\alpha}\right) \in \mathcal{M}$

$$
\operatorname{non}(\mathrm{nBM}-\text { space })=\operatorname{non}(\mathrm{nCM}-\text { space })=\operatorname{non}(\mathrm{nUCM}-\text { space })=\mathfrak{c}
$$

Theorem (Miller, 1983)

The theory ZFC $+\mathfrak{c}=\aleph_{2}+\left(\forall A \subseteq{ }^{\omega} 2\right)(A$ is an nCM-set $\equiv|A|<\mathfrak{c})$ is consistent relative to ZFC.

Corollary (Corazza, 1989)

The theory ZFC $+\mathfrak{c}=\aleph_{2}+(\forall A \subseteq \mathbb{R})(A$ is an nUCM-set $\equiv|A|<\mathfrak{c})$ is consistent relative to ZFC.
nBM-set of cardinality $\mathfrak{c}-\mathbf{C H}$, MA, $\mathfrak{p}=\mathfrak{c}, \mathfrak{b}=\mathfrak{c}, \mathbf{M A}($ countable), \ldots

- $\left\langle f_{\xi}: \xi<\mathfrak{c}\right\rangle$ be a bijective enumeration of $\{f: \mathbb{R} \rightarrow[0,1] ; f(\mathbb{R})=[0,1], f$ Borel $\}$
- $\alpha<\mathfrak{c}:\left\{x_{\xi} ; \xi<\alpha\right\},\left\langle P_{\xi}: \xi<\alpha\right\rangle$
- $\left\{f_{\alpha}^{-1}(a) ; a \in[0,1]\right\}$ is a family of \mathfrak{c} pairwise disjoint Borel sets
- $a_{\alpha} \in[0,1]$ such that $P_{\alpha}=f_{\alpha}^{-1}\left(a_{\alpha}\right) \in \mathcal{M}$
- $x_{\alpha} \in[0,1] \backslash\left(\left(\bigcup_{\xi \leq \alpha} P_{\xi}\right) \cup\left\{x_{\xi} ; \xi<\alpha\right\}\right)$

$$
\operatorname{non}(\text { nBM-space })=\operatorname{non}(\text { nCM-space })=\operatorname{non}(n U C M-\text { space })=\mathfrak{c}
$$

Theorem (Miller, 1983)

The theory ZFC $+\mathrm{c}=\aleph_{2}+\left(\forall A \subseteq{ }^{\omega} 2\right)(A$ is an nCM -set $\equiv|A|<\mathrm{c})$ is consistent relative to ZFC.

Corollary (Corazza, 1989)

The theory ZFC $+\mathfrak{c}=\aleph_{2}+(\forall A \subseteq \mathbb{R})(A$ is an nUCM-set $\equiv|A|<\mathfrak{c})$ is consistent relative to $\mathbf{Z F C}$.
nBM-set of cardinality $\mathfrak{c}-\mathbf{C H}$, MA, $\mathfrak{p}=\mathfrak{c}, \mathfrak{b}=\mathfrak{c}, \mathbf{M A}($ countable), \ldots

Corollary

The following statements are undecidable in ZFC. "there exists an nBM-set of cardinality \mathfrak{c} " "there exists an nCM-set of cardinality \mathfrak{c} " "there exists an nUCM-set of cardinality \mathfrak{c} "

Theorem (folklore)

ind $(X)=0$ for any completely regular (Tychonoff) nCM-space X. $\operatorname{Ind}(Y)=0$ for any normal nCM-space Y.

Theorem (folklore)

ind $(X)=0$ for any completely regular (Tychonoff) nCM-space X. $\operatorname{Ind}(Y)=0$ for any normal nCM-space Y.

Theorem

ind $(X)=0$ for any uniform nUCM-space X.

Any separable metrizable nUCM-space is homeomorphic to a subset of
any second-countable topological space X is metrizable if and only if X is regular

Theorem (folklore)

ind $(X)=0$ for any completely regular (Tychonoff) nCM-space X. $\operatorname{Ind}(Y)=0$ for any normal nCM-space Y.

Theorem

$\operatorname{ind}(X)=0$ for any uniform nUCM-space X.

Corollary

Any separable metrizable nUCM-space is homeomorphic to a subset of ${ }^{\omega} 2$.

- any second-countable topological space X is metrizable if and only if X is regular

Theorem

ind $(X)=0$ for any uniform nUCM-space X.

Theorem (Isbell, 1965)

For an nUCM-space $A \subseteq{ }^{\omega} 2$ there is a perfect set $P \subseteq{ }^{\omega} 2 \backslash A$.
A subset A of a perfect Polish space X is called Marczewski null measurable ((s ${ }^{0}$)-set) if any perfect subset of X contains a perfect subset disjoint with A.
\square

Metric separable space X is totally imperfect if X does not contain a homeomorphic copy of the perfect Cantor set ${ }^{\omega} 2$.

[^0]
Theorem

ind $(X)=0$ for any uniform nUCM-space X.

Theorem (Isbell, 1965)

For an nUCM-space $A \subseteq{ }^{\omega} 2$ there is a perfect set $P \subseteq{ }^{\omega} 2 \backslash A$.
A subset A of a perfect Polish space X is called Marczewski null measurable ((s $\left.{ }^{0}\right)$-set) if any perfect subset of X contains a perfect subset disjoint with A.

Corollary (Corazza, 1989)

An nUCM-subset A of a perfect Polish space X is Marczewski null measurable.
Metric separable space X is totally imperfect if X does not contain a homeomorphic copy of the perfect Cantor set

Theorem

ind $(X)=0$ for any uniform nUCM-space X.

Theorem (Isbell, 1965)

For an nUCM-space $A \subseteq{ }^{\omega} 2$ there is a perfect set $P \subseteq{ }^{\omega} 2 \backslash A$.
A subset A of a perfect Polish space X is called Marczewski null measurable ((s $\left.{ }^{0}\right)$-set) if any perfect subset of X contains a perfect subset disjoint with A.

Corollary (Corazza, 1989)

An nUCM-subset A of a perfect Polish space X is Marczewski null measurable.
Metric separable space X is totally imperfect if X does not contain a homeomorphic copy of the perfect Cantor set ${ }^{\omega} 2$.

0-dim

Theorem

The following statements are equivalent.
(1) X is an nCM -space.
(2) $[0,1] \backslash f(X)$ is dense in $[0,1]$ for any continuous $f: X \rightarrow[0,1]$.
(3) $f(X)$ is zero-dimensional for any continuous $f: X \rightarrow[0,1]$.
(4) $f(X)$ is totally imperfect for any continuous $f: X \rightarrow[0,1]$.
(5) $f(X)$ is Marczewski null measurable for any continuous $f: X \rightarrow[0,1]$.
(6) $f(X)$ is an nCM-space for any continuous $f: X \rightarrow[0,1]$.

Let \mathcal{P} be a topological property. X is projectively \mathcal{P} if every continuous image of X into perfect Polish space is \mathcal{P}.

Theorem

$\mathrm{nBM} \longrightarrow \mathrm{nCM} \longrightarrow \underset{\substack{\mathrm{nUCM} \\ \downarrow \\ 0-\operatorname{dim}}}{\longrightarrow}\left(\mathrm{s}^{0}\right) \longrightarrow(\mathrm{TI})$

Let \mathcal{P} be a topological property. X is projectively \mathcal{P} if every continuous image of X into perfect Polish space is \mathcal{P}.

Theorem

X is an nCM-space if and only if X is projectively nCM -space.

Let \mathcal{P} be a topological property. X is projectively \mathcal{P} if every continuous image of X into perfect Polish space is \mathcal{P}.

Theorem

X is an nCM-space if and only if X is projectively nCM -space.

Corollary

The following statements are equivalent.
(1) X is an nCM-space.
(2) X is projectively zero-dimensional.
(3) X is projectively totally imperfect.
4. X is projectively Marczewski null measurable.

$$
\begin{gathered}
\operatorname{cov}(\mathcal{P} \text {-set })=\min \{|\mathcal{A}| ; \bigcup \mathcal{A}=[0,1] \wedge(\forall A \in \mathcal{A}) " A \text { is a } \mathcal{P} \text {-set" }\} \\
\operatorname{add}(\mathcal{P} \text {-set })=\min \{|\mathcal{A}| ; " \bigcup \mathcal{A} \text { is not a } \mathcal{P} \text {-set" } \wedge(\forall A \in \mathcal{A})(A \subseteq[0,1] \wedge " A \text { is a } \mathcal{P} \text {-set" })\}
\end{gathered}
$$

$\operatorname{add}(\mathcal{P}$-space $)=\min \{|\mathcal{A}| ;(\exists X)$ " X is a topological (uniform) space" $\wedge \mathcal{A} \subseteq \mathcal{P}(X)$

$$
\wedge(\forall A \in \mathcal{A}) \text { " } A \text { is a } \mathcal{P} \text {-space" } \wedge \text { " } \bigcup \mathcal{A} \text { is not a } \mathcal{P} \text {-space" }\}
$$

$$
\begin{gathered}
\operatorname{add}(\mathrm{nBM}-\text { space })=\operatorname{add}(\mathrm{nBM}-\text { set })=\operatorname{cov}(\mathrm{nBM}-\text { set }) \\
\operatorname{add}(\mathrm{nCM}-\text { space })=\operatorname{add}(\mathrm{nCM}-\text { set })=\operatorname{cov}(\mathrm{nCM}-\text { set }) \\
\operatorname{add}(\mathrm{nUCM}-\text { space })=\operatorname{add}(\mathrm{nUCM}-\text { set })=\operatorname{cov}(\mathrm{nUCM}-\text { set })
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{add}(\mathrm{nBM}-\text { space })=\operatorname{add}(\mathrm{nBM}-\text { set })=\operatorname{cov}(\mathrm{nBM}-\text { set }) \\
\operatorname{add}(\mathrm{nCM}-\text { space })=\operatorname{add}(\mathrm{nCM}-\text { set })=\operatorname{cov}(\mathrm{nCM}-\text { set }) \\
\operatorname{add}(\mathrm{nUCM}-\text { space })=\operatorname{add}(\mathrm{nUCM}-\text { set })=\operatorname{cov}(\mathrm{nUCM}-\text { set })
\end{gathered}
$$

$\operatorname{cov}\left(\left(\mathrm{s}^{0}\right)-\right.$ set $) \leq \operatorname{cov}(\mathrm{nUCM}-$ set $) \leq \operatorname{cov}(\mathrm{nCM}-$ set $) \leq \operatorname{cov}(\mathrm{nBM}-$ set $)$

Corollary (Isbell, 1965; Corazza, 1989)

$\mathrm{nBM} \longrightarrow \mathrm{nCM} \longrightarrow \mathrm{nUCM} \longrightarrow\left(\mathrm{s}^{0}\right) \longrightarrow(\mathrm{TI})$

$$
\begin{gathered}
\operatorname{add}(\mathrm{nBM}-\text { space })=\operatorname{add}(\mathrm{nBM}-\text { set })=\operatorname{cov}(\mathrm{nBM}-\text { set }) \\
\operatorname{add}(\mathrm{nCM}-\text { space })=\operatorname{add}(\mathrm{nCM}-\text { set })=\operatorname{cov}(\mathrm{nCM}-\text { set }) \\
\operatorname{add}(\mathrm{nUCM}-\text { space })=\operatorname{add}(\mathrm{nUCM}-\text { set })=\operatorname{cov}(\mathrm{nUCM}-\text { set }) \\
\operatorname{cov}\left(\left(\mathrm{s}^{0}\right)-\text { set }\right) \leq \operatorname{cov}(\mathrm{nUCM} \text {-set }) \leq \operatorname{cov}(\mathrm{nCM}-\text { set }) \leq \operatorname{cov}(\mathrm{nBM}-\text { set })
\end{gathered}
$$

Corollary (Isbell, 1965; Corazza, 1989)

$$
\begin{gathered}
\operatorname{add}(\mathrm{nBM}-\text { space })=\operatorname{add}(\mathrm{nBM}-\text { set })=\operatorname{cov}(\mathrm{nBM}-\text { set }) \\
\operatorname{add}(\mathrm{nCM}-\text { space })=\operatorname{add}(\mathrm{nCM}-\text { set })=\operatorname{cov}(\mathrm{nCM}-\text { set }) \\
\operatorname{add}(\mathrm{nUCM}-\text { space })=\operatorname{add}(\mathrm{nUCM}-\text { set })=\operatorname{cov}(\mathrm{nUCM}-\text { set }) \\
\operatorname{cov}\left(\left(\mathrm{s}^{0}\right) \text {-set }\right) \leq \operatorname{cov}(\mathrm{nUCM}-\text { set }) \leq \operatorname{cov}(\mathrm{nCM}-\text { set }) \leq \operatorname{cov}(\mathrm{nBM}-\text { set })
\end{gathered}
$$

Corollary (Isbell, 1965; Corazza, 1989)

$\aleph_{1} \leq \operatorname{add}(n C M$-space $), \aleph_{1} \leq \operatorname{add}(n U C M$-space $), \operatorname{add}(n B M$-space $) \leq \mathfrak{c}$.

$$
\begin{gathered}
\operatorname{add}(\mathrm{nBM}-\text { space })=\operatorname{add}(\mathrm{nBM}-\text { set })=\operatorname{cov}(\mathrm{nBM}-\text { set }) \\
\operatorname{add}(\mathrm{nCM}-\text { space })=\operatorname{add}(\mathrm{nCM}-\text { set })=\operatorname{cov}(\mathrm{nCM}-\text { set }) \\
\operatorname{add}(\mathrm{nUCM}-\text { space })=\operatorname{add}(\mathrm{nUCM}-\text { set })=\operatorname{cov}(\mathrm{nUCM}-\text { set }) \\
\operatorname{cov}\left(\left(\mathrm{s}^{0}\right) \text {-set }\right) \leq \operatorname{cov}(\mathrm{nUCM}-\text { set }) \leq \operatorname{cov}(\mathrm{nCM}-\text { set }) \leq \operatorname{cov}(\mathrm{nBM}-\text { set })
\end{gathered}
$$

Corollary (Isbell, 1965; Corazza, 1989)

$\aleph_{1} \leq \operatorname{add}(n C M$-space $), \aleph_{1} \leq \operatorname{add}(n U C M$-space $), \operatorname{add}($ nBM-space $) \leq \mathfrak{c}$.

Theorem (Miller, 1983)

ZFC $+\mathfrak{c}=\kappa+\operatorname{add}(\mathrm{nCM}$-space $)=\aleph_{1}$ is consistent relative to ZFC $(\kappa$ is a cardinal such that $\left.\operatorname{cf}(\kappa)>\aleph_{0}\right)$.

$$
\begin{gathered}
\operatorname{add}(\mathrm{nBM}-\text { space })=\operatorname{add}(\mathrm{nBM}-\text { set })=\operatorname{cov}(\mathrm{nBM}-\text { set }) \\
\operatorname{add}(\mathrm{nCM}-\text { space })=\operatorname{add}(\mathrm{nCM}-\text { set })=\operatorname{cov}(\mathrm{nCM}-\text { set }) \\
\operatorname{add}(\mathrm{nUCM}-\text { space })=\operatorname{add}(\mathrm{nUCM}-\text { set })=\operatorname{cov}(\mathrm{nUCM}-\text { set }) \\
\operatorname{cov}\left(\left(\mathrm{s}^{0}\right) \text {-set }\right) \leq \operatorname{cov}(\mathrm{nUCM}-\text { set }) \leq \operatorname{cov}(\mathrm{nCM} \text {-set }) \leq \operatorname{cov}(\mathrm{nBM} \text {-set })
\end{gathered}
$$

Corollary (Isbell, 1965; Corazza, 1989)

$\aleph_{1} \leq \operatorname{add}\left(\mathrm{nCM}\right.$-space) $, \aleph_{1} \leq \operatorname{add}(\mathrm{nUCM}$-space $), \operatorname{add}(\mathrm{nBM}$-space $) \leq \mathfrak{c}$.

Theorem

$\mathbf{Z F C}+\mathfrak{c}=\aleph_{2}+\operatorname{add}(\mathrm{nCM}$-space $)=\aleph_{2}$ is consistent relative to $\mathbf{Z F C}$.

Theorem

(1) Any subset of a metric nBM-space X is an nBM-space.
(2) F_{σ} subset of a normal nCM-space is an nCM-space.
(3) Any subset of a uniform nUCM-space X is an nUCM-space.

A topological space X is hereditarily nCM-space, shortly hnCM-space, if any subset of X is an nCM -space.

\square
$\mathrm{nBM} \longrightarrow \mathrm{nCM} \longrightarrow \mathrm{nUCM} \longrightarrow\left(\mathrm{s}^{0}\right) \longrightarrow(\mathrm{TI})$

Theorem

(1) Any subset of a metric nBM-space X is an nBM-space.
(2) F_{σ} subset of a normal nCM-space is an nCM-space.
(3) Any subset of a uniform nUCM-space X is an nUCM-space.

A topological space X is hereditarily nCM-space, shortly hnCM-space, if any subset of X is an nCM-space.

Theorem (Corazza, 1989)

If CH holds true then there is an nCM -set which is not hereditarily nCM -set.

Theorem

(1) Any subset of a metric nBM-space X is an nBM-space.
(2) F_{σ} subset of a normal nCM-space is an nCM-space.
(3) Any subset of a uniform nUCM-space X is an nUCM-space.

A topological space X is hereditarily nCM-space, shortly hnCM-space, if any subset of X is an nCM-space.

Theorem (Corazza, 1989)

If CH holds true then there is an nCM -set which is not hereditarily nCM -set.

Theorem

(1) Any subset of a metric nBM-space X is an nBM-space.
(2) F_{σ} subset of a normal nCM-space is an nCM-space.
(3) Any subset of a uniform nUCM-space X is an nUCM-space.

A topological space X is hereditarily nCM-space, shortly hnCM-space, if any subset of X is an nCM-space.

Theorem (Corazza, 1989)

If CH holds true then there is an nCM -set which is not hereditarily nCM -set.

Theorem (Sierpiński, 1934)

If CH holds true then
Proposition \mathbf{C}_{5} There is a set of reals of cardinality \mathfrak{c} such that no interval of reals is its continuous image.

Theorem (Sierpiński, 1934)

If $\mathbf{C H}$ holds true then
Proposition \mathbf{C}_{5} There is a set of reals of cardinality \mathfrak{c} such that no interval of reals is its continuous image.
κ an uncountable cardinal not greater than $\mathfrak{c} ; X$ a Polish space; \mathcal{I} a σ-additive ideal which has Borel base and $\bigcup \mathcal{I}=X$.

A subset $L \subseteq X$ is called a κ - \mathcal{I}-set if $|L| \geq \kappa$ and $|L \cap A|<\kappa$ for any $A \in \mathcal{I}$.

- κ - \mathcal{N}-set $-\kappa$-Sierpiński set
- κ - \mathcal{M}-set $-\kappa$-Luzin set
- \aleph_{1}-Luzin set - Luzin set
- \aleph_{1}-Sierpiński set - Sierpiński set.
κ - \mathcal{I}-set of cardinality κ can be constructed under the assumption $\kappa=\operatorname{cov}(\mathcal{I})=\operatorname{cof}(\mathcal{I})$.
There is \mathfrak{c}-Sierpiński set if and only if $\operatorname{cov}(\mathcal{N})=\mathfrak{c}$.
There is \mathfrak{c}-Luzin set if and only if $\operatorname{cov}(\mathcal{M})=\mathfrak{c}$.

Theorem (Sierpiński, 1934)

If CH holds true then
Proposition \mathbf{C}_{5} There is a set of reals of cardinality \mathfrak{c} such that no interval of reals is its continuous image.

Theorem (Sierpiński, 1928-1934)

Any image of a Lusin set by Baire (Borel) function into reals has strongly measure zero.

Theorem (Sierpiński, 1929-1934)

Any image of a Sierpiński set by measurable function into reals is perfectly meager.

Theorem (Sierpiński, 1934)

If CH holds true then
Proposition \mathbf{C}_{5} There is a set of reals of cardinality \mathfrak{c} such that no interval of reals is its continuous image.

Theorem (Sierpiński, 1928-1934)

Any image of a Lusin set by Baire (Borel) function into reals has strongly measure zero.

Theorem (Sierpiński, 1929-1934)

Any image of a Sierpiński set by measurable function into reals is perfectly meager.

An ideal I of a Boolean algebra B is said to be κ-saturated if every subset $A \subseteq B \backslash I$ such that $a \wedge b \in I$ for any $a, b \in A, a \neq b$ has cardinality $|A|<\kappa$.

Theorem (Sierpiński, 1934)

If $\mathbf{C H}$ holds true then
Proposition \mathbf{C}_{5} There is a set of reals of cardinality \mathfrak{c} such that no interval of reals is its continuous image.

Theorem (Sierpiński, 1928-1934)

Any image of a Lusin set by Baire (Borel) function into reals has strongly measure zero.

Theorem (Sierpiński, 1929-1934)

Any image of a Sierpiński set by measurable function into reals is perfectly meager.

Theorem (Miller, 1983)

Let $\mathcal{I} \subseteq \operatorname{Borel}(\mathbb{R})$ be c-saturated ideal of Borel(\mathbb{R}). Any c - \mathcal{I}-set A is an nBM-set.

a topological space $X ; \mathcal{G} \subseteq \mathcal{P}(X)$

a topological space $X ; \mathcal{G} \subseteq \mathcal{P}(X)$

$$
\mathcal{G}_{0}=\mathcal{G} \subseteq \mathcal{G}_{1}=\mathcal{G}_{\sigma} \subseteq \cdots \subseteq \mathcal{G}_{\alpha} \subseteq \ldots
$$

- $\mathcal{G}_{\omega_{1}}=\mathcal{G}_{\omega_{1}+1}$
$\mathcal{B}(\mathcal{G})$ be the smallest σ-algebra containing \mathcal{G}

a topological space $X ; \mathcal{G} \subseteq \mathcal{P}(X)$

$$
\mathcal{G}_{0}=\mathcal{G} \subseteq \mathcal{G}_{1}=\mathcal{G}_{\sigma} \subseteq \cdots \subseteq \mathcal{G}_{\alpha} \subseteq \ldots
$$

- $\mathcal{G}_{\omega_{1}}=\mathcal{G}_{\omega_{1}+1}$
- $\mathcal{B}(\mathcal{G})$ be the smallest σ-algebra containing \mathcal{G}
- $\mathcal{C}(\mathcal{G})$ be a family of complements of sets in \mathcal{G}

a topological space $X ; \mathcal{G} \subseteq \mathcal{P}(X)$

$$
\mathcal{G}_{0}=\mathcal{G} \subseteq \mathcal{G}_{1}=\mathcal{G}_{\sigma} \subseteq \cdots \subseteq \mathcal{G}_{\alpha} \subseteq \ldots
$$

- $\mathcal{G}_{\omega_{1}}=\mathcal{G}_{\omega_{1}+1}$
- $\mathcal{B}(\mathcal{G})$ be the smallest σ-algebra containing \mathcal{G}
- $\mathcal{C}(\mathcal{G})$ be a family of complements of sets in \mathcal{G}
- if $\mathcal{C}(\mathcal{G}) \subseteq \mathcal{G}_{\omega_{1}}$ then $\mathcal{B}(\mathcal{G})=\mathcal{G}_{\omega_{1}}$
a perfectly normal space X has bounded Borel rank $(X \in \mathrm{bBr})$ if a family of open subsets of X has smaller order than - σ-space - every F_{σ} subset of X is a G_{δ} subset of X

a topological space $X ; \mathcal{G} \subseteq \mathcal{P}(X)$

$$
\mathcal{G}_{0}=\mathcal{G} \subseteq \mathcal{G}_{1}=\mathcal{G}_{\sigma} \subseteq \cdots \subseteq \mathcal{G}_{\alpha} \subseteq \ldots
$$

- $\mathcal{G}_{\omega_{1}}=\mathcal{G}_{\omega_{1}+1}$
- $\mathcal{B}(\mathcal{G})$ be the smallest σ-algebra containing \mathcal{G}
- $\mathcal{C}(\mathcal{G})$ be a family of complements of sets in \mathcal{G}
- if $\mathcal{C}(\mathcal{G}) \subseteq \mathcal{G}_{\omega_{1}}$ then $\mathcal{B}(\mathcal{G})=\mathcal{G}_{\omega_{1}}$
- the order of \mathcal{G} is the first ordinal $\alpha, \alpha>0$, such that $\mathcal{G}_{\alpha+1}=\mathcal{G}_{\alpha}$
open subsets of X has smaller order than ω_{1}
- σ-space
everv F_{\sim} subset of X is a G_{Σ} subse of X

Theorem (Bing, Bledsoe, Mauldin, 1974)If C is a countahle family of suhsets of real line such that $C(G) \subseteq G$ and $\operatorname{Borel}(\mathbb{R}) \subseteq \mathcal{B}(\mathcal{G})$, then \mathcal{G} has order ω.

a topological space $X ; \mathcal{G} \subseteq \mathcal{P}(X)$

$$
\mathcal{G}_{0}=\mathcal{G} \subseteq \mathcal{G}_{1}=\mathcal{G}_{\sigma} \subseteq \cdots \subseteq \mathcal{G}_{\alpha} \subseteq \ldots
$$

- $\mathcal{G}_{\omega_{1}}=\mathcal{G}_{\omega_{1}+1}$
- $\mathcal{B}(\mathcal{G})$ be the smallest σ-algebra containing \mathcal{G}
- $\mathcal{C}(\mathcal{G})$ be a family of complements of sets in \mathcal{G}
- if $\mathcal{C}(\mathcal{G}) \subseteq \mathcal{G}_{\omega_{1}}$ then $\mathcal{B}(\mathcal{G})=\mathcal{G}_{\omega_{1}}$
- the order of \mathcal{G} is the first ordinal $\alpha, \alpha>0$, such that $\mathcal{G}_{\alpha+1}=\mathcal{G}_{\alpha}$
- a perfectly normal space X has bounded Borel rank ($X \in \mathrm{bBr}$) if a family of open subsets of X has smaller order than ω_{1}
- σ-space - every F_{σ} subset of X is a G_{δ} subset of X
\square

a topological space $X ; \mathcal{G} \subseteq \mathcal{P}(X)$

$$
\mathcal{G}_{0}=\mathcal{G} \subseteq \mathcal{G}_{1}=\mathcal{G}_{\sigma} \subseteq \cdots \subseteq \mathcal{G}_{\alpha} \subseteq \ldots
$$

- $\mathcal{G}_{\omega_{1}}=\mathcal{G}_{\omega_{1}+1}$
- $\mathcal{B}(\mathcal{G})$ be the smallest σ-algebra containing \mathcal{G}
- $\mathcal{C}(\mathcal{G})$ be a family of complements of sets in \mathcal{G}
- if $\mathcal{C}(\mathcal{G}) \subseteq \mathcal{G}_{\omega_{1}}$ then $\mathcal{B}(\mathcal{G})=\mathcal{G}_{\omega_{1}}$
- the order of \mathcal{G} is the first ordinal $\alpha, \alpha>0$, such that $\mathcal{G}_{\alpha+1}=\mathcal{G}_{\alpha}$
- a perfectly normal space X has bounded Borel rank ($X \in \mathrm{bBr}$) if a family of open subsets of X has smaller order than ω_{1}
- σ-space - every F_{σ} subset of X is a G_{δ} subset of X

Theorem (Bing, Bledsoe, Mauldin, 1974)

If \mathcal{G} is a countable family of subsets of real line such that $\mathcal{C}(\mathcal{G}) \subseteq \mathcal{G}$ and Borel $(\mathbb{R}) \subseteq \mathcal{B}(\mathcal{G})$, then \mathcal{G} has order ω_{1}.

Theorem(Bing, Bledsoe, Mauldin, 1974)

If \mathcal{G} is a countable family of subsets of real line such that $\mathcal{C}(\mathcal{G}) \subseteq \mathcal{G}$ and $\operatorname{Borel}(\mathbb{R}) \subseteq \mathcal{B}(\mathcal{G})$, then \mathcal{G} has order ω_{1}.

Theorem(Bing, Bledsoe, Mauldin, 1974)

If \mathcal{G} is a countable family of subsets of real line such that $\mathcal{C}(\mathcal{G}) \subseteq \mathcal{G}$ and $\operatorname{Borel}(\mathbb{R}) \subseteq \mathcal{B}(\mathcal{G})$, then \mathcal{G} has order ω_{1}.

Theorem (Reclaw, 1989?)

Let X be a separable metric space. If X is of bounded Borel rank then X is an nBM-space. In particular, any σ-set is an nBM-space.

Theorem(Bing, Bledsoe, Mauldin, 1974)

If \mathcal{G} is a countable family of subsets of real line such that $\mathcal{C}(\mathcal{G}) \subseteq \mathcal{G}$ and $\operatorname{Borel}(\mathbb{R}) \subseteq \mathcal{B}(\mathcal{G})$, then \mathcal{G} has order ω_{1}.

Theorem (Reclaw, 1989?)

Let X be a separable metric space. If X is of bounded Borel rank then X is an nBM-space. In particular, any σ-set is an nBM-space.

Theorem (Szpilrajn-Marczewski, 1930)
An \aleph_{1}-Sierpiński set is a σ-space.

γ-cover \mathcal{U} - every $x \in X$ lies in all but finitely many members of \mathcal{U} and $X \notin \mathcal{U}$

$\mathrm{S}_{1}(Г, Г)$-property, 1996

For each sequence $\left\langle\mathcal{U}_{n}: n \in \omega\right\rangle$ of countable open γ-covers, there exist sets $U_{n} \in \mathcal{U}_{n}$ such that $\left\{U_{n} ; n \in \omega\right\}$ is an open γ-cover.

Theorem (Haleš, 2005)

Perfectly normal space X is hereditarily $\mathrm{S}_{1}(\Gamma, \Gamma)$-space if and only if X is both, an $\mathrm{S}_{1}(\Gamma, \Gamma)$-space and a σ-space.

γ-cover \mathcal{U} - every $x \in X$ lies in all but finitely many members of \mathcal{U} and $X \notin \mathcal{U}$

$\mathrm{S}_{1}(Г, Г)$-property, 1996

For each sequence $\left\langle\mathcal{U}_{n}: n \in \omega\right\rangle$ of countable open γ-covers, there exist sets $U_{n} \in \mathcal{U}_{n}$ such that $\left\{U_{n} ; n \in \omega\right\}$ is an open γ-cover.

Theorem (Haleš, 2005)

Perfectly normal space X is hereditarily $\mathrm{S}_{1}(\Gamma, \Gamma)$-space if and only if X is both, an $\mathrm{S}_{1}(\Gamma, \Gamma)$-space and a σ-space.

$\boldsymbol{f}_{n} \xrightarrow{\text { QN }} \boldsymbol{f}$ on \boldsymbol{X}

(1) if there exists a sequence of positive reals $\left\langle\varepsilon_{n}: n \in \omega\right\rangle$ converging to zero
(2) for any $x \in X$:

$$
\left|f_{n}(x)-f(x)\right|<\varepsilon_{n}
$$

holds for all but finitely many $n \in \omega$

QN-property, 1991

X has the property QN if each sequence of continuous real valued functions converging pointwise to zero is converging to zero quasi-normally.

Theorem (Reclaw, 1997)

Any metric $Q N$-space is a σ-space.

QN-property, 1991

X has the property QN if each sequence of continuous real valued functions converging pointwise to zero is converging to zero quasi-normally.

Theorem (Reclaw, 1997)

Any metric $Q N$-space is a σ-space.

Theorem (Bukovský-Haleš, Sakai, 2007)

Perfectly normal QN-space is an $\mathrm{S}_{1}(\Gamma, \Gamma)$-space.

QN-property, 1991

X has the property QN if each sequence of continuous real valued functions converging pointwise to zero is converging to zero quasi-normally.

Theorem (Reclaw, 1997)

Any metric $Q N$-space is a σ-space.

Theorem (Bukovský-Haleš, Sakai, 2007)

Perfectly normal QN-space is an $\mathrm{S}_{1}(\Gamma, \Gamma)$-space.

Theorem (L. Bukovský, I. Reclaw, M. Repický, 1991)

\mathfrak{b}-Sierpinski set is a $Q N$-set.

Theorem (L. Bukovský, I. Reclaw, M. Repický, 1991)

\mathfrak{b}-Sierpinski set is a $Q N$-set.

Theorem (Poprougénko, Sierpiński, 1930)

An \aleph_{1}-Lusin set has bounded Borel rank.

Theorem (Poprougénko, Sierpiński, 1930)

An \aleph_{1}-Lusin set has bounded Borel rank.

Theorem

Let \mathcal{P} be a topological property such that the unit interval $[0,1]$ is not \mathcal{P}. If X is projectively \mathcal{P} then X is an nCM -space.

Theorem

Let \mathcal{P} be a topological property such that the unit interval $[0,1]$ is not \mathcal{P}. If X is projectively \mathcal{P} then X is an nCM -space.

wQN-property (weak QN), 1991

X has the property wQN if each sequence of continuous real valued functions converging to zero has a subsequence converging to zero quasi-normally.

Theorem

Let \mathcal{P} be a topological property such that the unit interval $[0,1]$ is not \mathcal{P}. If X is projectively \mathcal{P} then X is an nCM -space.

Theorem (Bukovský, Reclaw, Repický, 1991)

Any wQN-space is an nCM-space.

Theorem

Let \mathcal{P} be a topological property such that the unit interval $[0,1]$ is not \mathcal{P}. If X is projectively \mathcal{P} then X is an nCM -space.

Theorem (Bukovský, Reclaw, Repický, 1991)

Any wQN-space is an nCM-space.
Let X be a Polish space. A set $A \subseteq X$ has strongly measure zero if for any sequence $\left\{\varepsilon_{n}\right\}_{n=0}^{\infty}$ of positive real numbers there is a sequence $\left\langle A_{n}: n \in \omega\right\rangle$ of open sets such that $A \subseteq \bigcup_{n \in \omega} A_{n}$ and $\operatorname{diam}\left(A_{n}\right)<\varepsilon_{n}$ for any $n \in \omega$.

Lemma

Let X, Y be Polish spaces, $A \subseteq X$ and $f: A \rightarrow Y$. If f is uniformly continuous and A has strong measure zero then $f(A)$ has strong measure zero as well.

Theorem

Let \mathcal{P} be a topological property such that the unit interval $[0,1]$ is not \mathcal{P}. If X is projectively \mathcal{P} then X is an nCM-space.

Theorem (Bukovský, Reclaw, Repický, 1991)

Any wQN-space is an nCM-space.
Let X be a Polish space. A set $A \subseteq X$ has strongly measure zero if for any sequence $\left\{\varepsilon_{n}\right\}_{n=0}^{\infty}$ of positive real numbers there is a sequence $\left\langle A_{n}: n \in \omega\right\rangle$ of open sets such that $A \subseteq \bigcup_{n \in \omega} A_{n}$ and $\operatorname{diam}\left(A_{n}\right)<\varepsilon_{n}$ for any $n \in \omega$.

Lemma

Let X, Y be Polish spaces, $A \subseteq X$ and $f: A \rightarrow Y$. If f is uniformly continuous and A has strong measure zero then $f(A)$ has strong measure zero as well.

Theorem (Corazza, 1989)

Any subset of a Polish space X with strong measure zero is an nUCM-space.

$\mathrm{C}^{\prime \prime}$	Rothberger property $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$	$\mathcal{S N}$	strong measure zero
γ	property γ	$\mathcal{U N}$	universal measure zero
conc	concentrated	$\mathcal{P M}$	perfectly meager
conc'	concentrated on its subset		

Theorem (Just-Miller-Scheepers-Szeptycki, 1996)

If $\mathfrak{t}=\mathfrak{b}$ then there exists a set of reals $X \subseteq{ }^{\omega} 2$ such that X is an $\mathrm{S}_{1}(\Gamma, \Gamma)^{*}$-space and X is not σ-compact.

Theorem (Just-Miller-Scheepers-Szeptycki, 1996)

If $\mathfrak{t}=\mathfrak{b}$ then there exists a set of reals $X \subseteq{ }^{\omega} 2$ such that X is an $\mathrm{S}_{1}(\Gamma, \Gamma)^{*}$-space and X is not σ-compact.

Theorem (Scheepers, 1999)

A topological space X is an $\mathrm{S}_{1}(\Gamma, \Gamma)^{*}$-space if and only if X is an $\mathrm{S}_{1}(\Gamma, \Gamma)$-space

Theorem (Just-Miller-Scheepers-Szeptycki, 1996)

If $\mathfrak{t}=\mathfrak{b}$ then there exists a set of reals $X \subseteq{ }^{\omega} 2$ such that X is an $\mathrm{S}_{1}(\Gamma, \Gamma)^{*}$-space and X is not σ-compact.

Theorem (Scheepers, 1999)

A topological space X is an $\mathrm{S}_{1}(\Gamma, \Gamma)^{*}$-space if and only if X is an $\mathrm{S}_{1}(\Gamma, \Gamma)$-space

Theorem (see e.g. Bukovský, 2011)

If $\mathfrak{t}=\mathfrak{b}$ then there exists a set of reals $X \subseteq{ }^{\omega} 2$ of cardinality \mathfrak{b} such that X is an $\mathrm{S}_{1}(\Gamma, \Gamma)$-space and $X \backslash[\omega]^{\omega}$ is not a $w Q N$-space. Hence, X is not a λ-set.

Theorem (Just-Miller-Scheepers-Szeptycki, 1996)

If $\mathfrak{t}=\mathfrak{b}$ then there exists a set of reals $X \subseteq{ }^{\omega} 2$ such that X is an $S_{1}(\Gamma, \Gamma)^{*}$-space and X is not σ-compact.

Theorem (Scheepers, 1999)

A topological space X is an $\mathrm{S}_{1}(\Gamma, \Gamma)^{*}$-space if and only if X is an $\mathrm{S}_{1}(\Gamma, \Gamma)$-space

Theorem (see e.g. Bukovský, 2011)

If $\mathfrak{t}=\mathfrak{b}$ then there exists a set of reals $X \subseteq{ }^{\omega} 2$ of cardinality \mathfrak{b} such that X is an $\mathrm{S}_{1}(\Gamma, \Gamma)$-space and $X \backslash[\omega]^{\omega}$ is not a $w Q N$-space. Hence, X is not a λ-set.

Theorem

If $\mathfrak{t}=\mathfrak{c}$ then there exists a set of reals $X \subseteq{ }^{\omega} 2$ of cardinality \mathfrak{c} such that X is an $\mathrm{S}_{1}(\Gamma, \Gamma)$-space and $X \backslash[\omega]^{\omega}$ is not an nCM-space.

$\mathrm{C}^{\prime \prime}$	Rothberger property $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$	$\mathcal{S N}$	strong measure zero
γ	property γ	$\mathcal{U N}$	universal measure zero
conc	concentrated	$\mathcal{P M}$	perfectly meager
conc'	concentrated on its subset		

A subset A of a topological space X is called perfectly meager if for any perfect set $P \subseteq X$ the intersection $A \cap P$ is meager in the subspace P.
A subset A of a perfectly normal topological space X has universal measure zero if for any finite diffused Borel measure μ on X we have $\mu^{*}(A)=0$, i.e. $\mu(B)=0$ for some Borel B such that $A \subseteq B$.

Theorem (Miller, 1983; Corazza, 1989)

There is a model of ZFC such that $\mathfrak{c}=\aleph_{2}$ and the following holds:

- the following statements are equivalent for $A \subseteq \mathbb{R}$
(1) $|A|<\mathfrak{c}$.
(2) A is an nCM-set.
(3) A is hereditarily $n C M-s e t$.
(4) A is an nBM-set.
(5) A is an nUCM-set.
- any perfectly meager set is an nBM-set.
- there is an nBM-set which is not perfectly meager set.
- any universal measure zero set is an nBM-set.
- there is an nBM-set which is not universal measure zero set.

$\mathrm{C}^{\prime \prime}$	Rothberger property $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$	$\mathcal{S N}$	strong measure zero
γ	property γ	$\mathcal{U N}$	universal measure zero
conc	concentrated	$\mathcal{P M}$	perfectly meager
conc'	concentrated on its subset		

Theorem (Corazza, 1989)

There is a model of ZFC such that $\mathrm{c}=\aleph_{2}$ and the following holds:

- the following statements are equivalent for $A \subseteq \mathbb{R}$
(1) $|A|<c$.
(2) A is an nCM-set.
(3) A is hereditarily nCM-set.
(4) A is an nBM-set.
(5) A is an nUCM-set.

6. A has strong measure zero (i.e. Generalized Borel Conjecture holds).

- any nUCM-set has universal measure zero.
- there is universally measure zero set of cardinality \mathfrak{c} (which is not an nUCM-set).

$\mathrm{C}^{\prime \prime}$	Rothberger property $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$	$\mathcal{S N}$	strong measure zero
γ	property γ	$\mathcal{U N}$	universal measure zero
conc	concentrated	$\mathcal{P M}$	perfectly meager
conc'	concentrated on its subset		

Theorem (Ciesielski, Shelah, 1999)

There is a model of ZFC such that $\mathrm{c}=\aleph_{2}$ and the following holds:

- the following statements are equivalent for $A \subseteq \mathbb{R}$
(1) $|A|<c$.
(2) A is an nCM-set.
(3) A is hereditarily nCM -set.
(4) A is an nBM-set.
(5) A is an nUCM-set.
- any nCM -set is perfectly meager.
- there is perfectly meager set of cardinality c (which is not an nCM -set).

$\mathrm{C}^{\prime \prime}$	Rothberger property $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$	$\mathcal{S N}$	strong measure zero
γ	property γ	$\mathcal{U N}$	universal measure zero
conc	concentrated	$\mathcal{P M}$	perfectly meager
conc'	concentrated on its subset		

Theorem (Corazza, 1989)

There is Marczewski null measurable set $X \subseteq{ }^{\omega} 2$ which is not an nUCM-space.

Theorem (Hilgers, 1937)

Any separable metric space of cardinality \mathfrak{c} is a continuous injective image of a separable metric spaces of every non-negative dimension including infinite dimension.

Corollary (Mazurkiewicz, Szpilrajn-Marczewski, 1937)

(1) If there is a λ-set (separable metric) of cardinality \mathfrak{c} (e.g. if non $(\mathcal{M})=\mathfrak{c}$ or if $\mathfrak{b}=\mathfrak{c}$) then there is a λ-set of any dimension.
(2) If there is a universal measure zero set of cardinality $\mathfrak{c}(e . g$. if $\operatorname{non}(\mathcal{N})=\mathfrak{c})$ then there is a universal measure zero set of any dimension.

$\mathrm{C}^{\prime \prime}$	Rothberger property $\mathrm{S}_{1}(\mathcal{O}, \mathcal{O})$	$\mathcal{S N}$	strong measure zero
γ	property γ	$\mathcal{U N}$	universal measure zero
conc	concentrated	$\mathcal{P M}$	perfectly meager
conc'	concentrated on its subset		

Theorem (Miller, 1979)

The theory ZFC + "any uncountable set of reals has unbounded Borel rank" is consistent relative to ZFC.

Theorem (Bukovský, Reclaw, Repický, 1991)

```
non }(\textrm{wQN}\mathrm{ -space })=\mathfrak{b}
```


Theorem (Rothberger, 1941)

If $\mathbf{C H}$ holds true then there is concentrated set which is not nCM -set.

Theorem (Corazza, 1989)

If $\mathbf{C H}$ holds true then there is concentrated set on its subset which is not hereditarily nCM-set.

Bibliography

曷
Bing R.H., Bledsoe W.W. and Mauldin R.D., Sets generated by rectangles, Pacific J. Math. 51 (1974), 27-36.

Bukovský L., The Structure of the Real Line, Monogr. Mat., Springer-Birkhauser, Basel, 2011.

Bukovský L., Reclaw I. and Repický M., Spaces not distinguishing pointwise and quasinormal convergence of real functions, Topology Appl. 41 (1991), 25-40.

Ciesielski K. and Shelah S., Model with no magic set, J. Symbolic Logic 64 (1999), 1467-1490.

Corazza P., The generalized Borel conjecture and strongly proper orders, Trans. Amer. Math. Soc. 316 (1989), 115-140.
Haleš J., On Scheepers' conjecture, Acta Univ. Carolinae Math. Phys. 46 (2005), 27-31.
Hilgers A., Bemerkung zur Dimensionstheorie, Fund. Math. 28 (1937), 303-304.

Isbell J., Spaces without large projective subspaces, Math. Scand. 17 (1965), 89-105.

Isbell J., A set whose square can map onto a perfect set, Proc. Amer. Math. Soc. 20 (1969), 254-255.

Just W., Miller A.W., Scheepers M. and Szeptycki P.J., Combinatorics of open covers II, Topology Appl. 73 (1996), 241-266.

Mazurkiewicz S. and Szpilrajn-Marczewski E., Sur la dimension de certains ensembles singuliers, Fund. Math. 28 (1937), 305-308.

Bibliography

Miller A.W., On the length of Borel hierarchies, Ann. Math. Logic 16 (1979), 233-267.

Miller A.W., Mapping a set of reals onto the reals, The Journal of Symbolic Logic 48 (1983), 575-584.

Poprougénko G., Sur un problème de M. Mazurkiewicz, Fund. Math. 15 (1930), 284-286.

Reclaw I., Metric spaces not distinguishing pointwise and quasinormal convergence of real functions, Bull. Acad. Polon. Sci. 45 (1997), 287-289.

Rothberger F., Sur les familles indenombrables de suites de nombres naturels et les problemes concernant la propriete C, Math. Proc. Cambridge Philos. Soc. 37 (1941), 109-126.

Sakai M., The sequence selection properties of $\mathrm{C}_{p}(X)$, Topology Appl. 154 (2007), 552-560.

Scheepers M., Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996), 31-62.

Scheepers M., Sequential convergence in $\mathrm{C}_{p}(X)$ and a covering property, East-West J. of Mathematics 1 (1999), $207-214$.

Sierpiński W., Hypothèse du Continu, Monogr. Mat., Warszawa - Lwów, 1934.

Sierpiński W., Sur un ensemble non dénombrable, dont toute image continue est de mesure nulle, Fund. Math. 11 (1928), 302-304.

Thanks for Your attention!

[^0]: 0-dim

