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Definitions
J. Haleš, 2005
A topological space X is an nCM-space (non-Continuously Mappable space) if X
cannot be continuously mapped onto [0,1].

J. Isbell, 1965, 1969; A.W. Miller, 1983

A topological space X is an nBM-space (non-Borel Mappable space) if X cannot be
mapped onto [0,1] by any Borel map.
A uniform space X is an nUCM-space (non-Uniformly Continuously Mappable space)
if X cannot be uniformly continuously mapped onto [0,1].

P. Corazza, 1989

uniform space X

X is an nBM-space→ X is an nCM-space→ X is an nUCM-space

preserved by appropriate maps
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non(nBM-space) = non(nCM-space) = non(nUCM-space) = c

Theorem (Miller, 1983)

The theory ZFC + c = ℵ2 + (∀A ⊆ ω2)(A is an nCM-set ≡ |A| < c) is consistent
relative to ZFC.

Corollary (Corazza, 1989)

The theory ZFC + c = ℵ2 + (∀A ⊆ R)(A is an nUCM-set ≡ |A| < c) is consistent
relative to ZFC.

nBM-set of cardinality c - CH, MA, p = c, b = c, MA(countable), . . .
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nBM-set of cardinality c - CH, MA, p = c, b = c, MA(countable), . . .

〈fξ : ξ < c〉 be a bijective enumeration of {f : R→ [0, 1]; f (R) = [0, 1], f Borel}
α < c: {xξ; ξ < α}, 〈Pξ : ξ < α〉
{f−1
α (a); a ∈ [0, 1]} is a family of c pairwise disjoint Borel sets

aα ∈ [0, 1] such that Pα = f−1
α (aα) ∈M

xα ∈ [0, 1] \
(

(
⋃
ξ≤α Pξ) ∪ {xξ; ξ < α}

)
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Theorem (Miller, 1983)

The theory ZFC + c = ℵ2 + (∀A ⊆ ω2)(A is an nCM-set ≡ |A| < c) is consistent
relative to ZFC.

Corollary (Corazza, 1989)

The theory ZFC + c = ℵ2 + (∀A ⊆ R)(A is an nUCM-set ≡ |A| < c) is consistent
relative to ZFC.

nBM-set of cardinality c - CH, MA, p = c, b = c, MA(countable), . . .

Corollary

The following statements are undecidable in ZFC.
“there exists an nBM-set of cardinality c”
“there exists an nCM-set of cardinality c”
“there exists an nUCM-set of cardinality c”
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Theorem (folklore)

ind(X )= 0 for any completely regular (Tychonoff) nCM-space X.
Ind(Y )= 0 for any normal nCM-space Y .

Theorem

ind(X )= 0 for any uniform nUCM-space X.

Corollary

Any separable metrizable nUCM-space is homeomorphic to a subset of ω2.

any second-countable topological space X is metrizable if and only if X is regular
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Theorem
ind(X )= 0 for any uniform nUCM-space X .

Theorem (Isbell, 1965)

For an nUCM-space A ⊆ ω2 there is a perfect set P ⊆ ω2 \ A.

A subset A of a perfect Polish space X is called Marczewski null measurable ((s0)-set)
if any perfect subset of X contains a perfect subset disjoint with A.

Corollary (Corazza, 1989)

An nUCM-subset A of a perfect Polish space X is Marczewski null measurable.

Metric separable space X is totally imperfect if X does not contain a homeomorphic
copy of the perfect Cantor set ω2.

(TI)-(s0)

0-dim

-nUCM-nCM-nBM

?
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Theorem

The following statements are equivalent.
1 X is an nCM-space.
2 [0, 1] \ f (X ) is dense in [0, 1] for any continuous f : X → [0, 1].
3 f (X ) is zero-dimensional for any continuous f : X → [0, 1].
4 f (X ) is totally imperfect for any continuous f : X → [0, 1].
5 f (X ) is Marczewski null measurable for any continuous f : X → [0, 1].
6 f (X ) is an nCM-space for any continuous f : X → [0, 1].

(TI)-(s0)

0-dim

-nUCM-nCM-nBM

?
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Let P be a topological property. X is projectively P if every continuous image of X

into perfect Polish space is P.

Theorem

X is an nCM-space if and only if X is projectively nCM-space.

Corollary

The following statements are equivalent.
1 X is an nCM-space.
2 X is projectively zero-dimensional.
3 X is projectively totally imperfect.
4 X is projectively Marczewski null measurable.

(TI)-(s0)

0-dim

-nUCM-nCM-nBM

?
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cov(P-set) = min{|A|;
⋃
A = [0, 1] ∧ (∀A ∈ A) “A is a P-set”}

add(P-set) = min{|A|; “
⋃
A is not a P-set”∧(∀A ∈ A)( A ⊆ [0, 1]∧“A is a P-set”)}

add(P-space) = min{|A|; (∃X )“X is a topological (uniform) space” ∧ A ⊆ P(X )

∧(∀A ∈ A) “A is a P-space” ∧ “
⋃
A is not a P-space”}

(TI)-(s0)

0-dim

-nUCM-nCM-nBM

?
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add(nBM-space) = add(nBM-set) = cov(nBM-set)

add(nCM-space) = add(nCM-set) = cov(nCM-set)

add(nUCM-space) = add(nUCM-set) = cov(nUCM-set)

cov((s0)-set) ≤ cov(nUCM-set) ≤ cov(nCM-set) ≤ cov(nBM-set)

Corollary (Isbell, 1965; Corazza, 1989)

ℵ1 ≤ add(nCM-space),ℵ1 ≤ add(nUCM-space), add(nBM-space) ≤ c.

(TI)-(s0)

0-dim

-nUCM-nCM-nBM

?
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Theorem (Miller, 1983)
ZFC + c = κ+ add(nCM-space) = ℵ1 is consistent relative to ZFC (κ is a cardinal such
that cf(κ) > ℵ0).

(TI)-(s0)

0-dim

-nUCM-nCM-nBM

?
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Theorem

1 Any subset of a metric nBM-space X is an nBM-space.
2 Fσ subset of a normal nCM-space is an nCM-space.
3 Any subset of a uniform nUCM-space X is an nUCM-space.

A topological space X is hereditarily nCM-space, shortly hnCM-space, if any subset
of X is an nCM-space.

Theorem (Corazza, 1989)

If CH holds true then there is an nCM-set which is not hereditarily nCM-set.

(TI)-(s0)

0-dim

-nUCM-nCM-nBM

?
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Theorem (Sierpiński, 1934)

If CH holds true then
Proposition C5 There is a set of reals of cardinality c such that no interval of reals is
its continuous image.
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Theorem (Sierpiński, 1934)

If CH holds true then
Proposition C5 There is a set of reals of cardinality c such that no interval of reals is
its continuous image.

κ an uncountable cardinal not greater than c; X a Polish space; I a σ-additive ideal
which has Borel base and

⋃
I = X .

A subset L ⊆ X is called a κ-I-set if |L| ≥ κ and |L ∩ A| < κ for any A ∈ I.

κ-N -set - κ-Sierpiński set

κ-M-set - κ-Luzin set

ℵ1-Luzin set - Luzin set

ℵ1-Sierpiński set - Sierpiński set.

κ-I-set of cardinality κ can be constructed under the assumption κ = cov(I) = cof(I).
There is c-Sierpiński set if and only if cov(N ) = c.
There is c-Luzin set if and only if cov(M) = c.
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Theorem (Sierpiński, 1934)

If CH holds true then
Proposition C5 There is a set of reals of cardinality c such that no interval of reals is
its continuous image.

Theorem (Sierpiński, 1928 - 1934)

Any image of a Lusin set by Baire (Borel) function into reals has strongly measure
zero.

Theorem (Sierpiński, 1929-1934)

Any image of a Sierpiński set by measurable function into reals is perfectly meager.
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its continuous image.

Theorem (Sierpiński, 1928 - 1934)

Any image of a Lusin set by Baire (Borel) function into reals has strongly measure
zero.

Theorem (Sierpiński, 1929-1934)

Any image of a Sierpiński set by measurable function into reals is perfectly meager.

An ideal I of a Boolean algebra B is said to be κ-saturated if every subset A ⊆ B \ I
such that a ∧ b ∈ I for any a, b ∈ A, a 6= b has cardinality |A| < κ.
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Theorem (Sierpiński, 1934)

If CH holds true then
Proposition C5 There is a set of reals of cardinality c such that no interval of reals is
its continuous image.

Theorem (Sierpiński, 1928 - 1934)

Any image of a Lusin set by Baire (Borel) function into reals has strongly measure
zero.

Theorem (Sierpiński, 1929-1934)

Any image of a Sierpiński set by measurable function into reals is perfectly meager.

Theorem (Miller, 1983)

Let I ⊆ Borel(R) be c-saturated ideal of Borel(R). Any c-I-set A is an nBM-set.
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a topological space X ; G ⊆ P(X )

G0 = G ⊆ G1 = Gσ ⊆ · · · ⊆ Gα ⊆ . . .

Gω1 = Gω1+1

B(G) be the smallest σ-algebra containing G
C(G) be a family of complements of sets in G
if C(G) ⊆ Gω1 then B(G) = Gω1

the order of G is the first ordinal α, α > 0, such that Gα+1 = Gα
a perfectly normal space X has bounded Borel rank (X ∈ bBr) if a family of
open subsets of X has smaller order than ω1

σ-space - every Fσ subset of X is a Gδ subset of X

Theorem (Bing, Bledsoe, Mauldin, 1974)

If G is a countable family of subsets of real line such that C(G) ⊆ G and
Borel(R) ⊆ B(G), then G has order ω1.
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(UPJŠ Košice) nCM-space 1st of February 2012 13 / 27



Theorem(Bing, Bledsoe, Mauldin, 1974)

If G is a countable family of subsets of real line such that C(G) ⊆ G and
Borel(R) ⊆ B(G), then G has order ω1.

(TI)-(s0)

0-dim

-nUCM-nCM-hnCM-nBM

?
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Theorem(Bing, Bledsoe, Mauldin, 1974)

If G is a countable family of subsets of real line such that C(G) ⊆ G and
Borel(R) ⊆ B(G), then G has order ω1.

Theorem (Reclaw, 1989?)

Let X be a separable metric space. If X is of bounded Borel rank then X is
an nBM-space. In particular, any σ-set is an nBM-space.
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Theorem (Szpilrajn-Marczewski, 1930)

An ℵ1-Sierpiński set is a σ-space.
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γ -cover U - every x ∈ X lies in all but finitely many members of U and X /∈ U

S1(Γ, Γ)-property, 1996
For each sequence 〈Un : n ∈ ω〉 of countable open γ-covers, there exist sets Un ∈ Un

such that {Un; n ∈ ω} is an open γ-cover.

Theorem (Haleš, 2005)
Perfectly normal space X is hereditarily S1(Γ, Γ)-space if and only if X is both,
an S1(Γ, Γ)-space and a σ-space.
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Perfectly normal space X is hereditarily S1(Γ, Γ)-space if and only if X is both,
an S1(Γ, Γ)-space and a σ-space.

hS1(Γ, Γ)
@@I

(s0)

σ 0-dim

-nUCM-nCM-hnCM-nBM-bBr

?
@
@I
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f n
QN−→ f on X

1 if there exists a sequence of positive reals 〈εn : n ∈ ω〉 converging to zero
2 for any x ∈ X :

|fn(x)− f (x)| < εn

holds for all but finitely many n ∈ ω

hS1(Γ, Γ)
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QN-property, 1991
X has the property QN if each sequence of continuous real valued functions
converging pointwise to zero is converging to zero quasi-normally.

Theorem (Reclaw, 1997)
Any metric QN-space is a σ-space.
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QN-property, 1991
X has the property QN if each sequence of continuous real valued functions
converging pointwise to zero is converging to zero quasi-normally.

Theorem (Reclaw, 1997)
Any metric QN-space is a σ-space.

Theorem (Bukovský–Haleš, Sakai, 2007)
Perfectly normal QN-space is an S1(Γ, Γ)-space.
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QN-property, 1991
X has the property QN if each sequence of continuous real valued functions
converging pointwise to zero is converging to zero quasi-normally.

Theorem (Reclaw, 1997)
Any metric QN-space is a σ-space.

Theorem (Bukovský–Haleš, Sakai, 2007)
Perfectly normal QN-space is an S1(Γ, Γ)-space.
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Theorem (L. Bukovský, I. Reclaw, M. Repický, 1991)
b-Sierpinski set is a QN-set.
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Theorem (L. Bukovský, I. Reclaw, M. Repický, 1991)
b-Sierpinski set is a QN-set.
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Theorem (Poprougénko, Sierpiński, 1930)
An ℵ1-Lusin set has bounded Borel rank.

b-(S) - QN - hS1(Γ, Γ)
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Theorem (Poprougénko, Sierpiński, 1930)
An ℵ1-Lusin set has bounded Borel rank.
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Theorem
Let P be a topological property such that the unit interval [0, 1] is not P. If X is
projectively P then X is an nCM-space.
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Theorem
Let P be a topological property such that the unit interval [0, 1] is not P. If X is
projectively P then X is an nCM-space.

wQN-property (weak QN), 1991
X has the property wQN if each sequence of continuous real valued functions
converging to zero has a subsequence converging to zero quasi-normally.
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Theorem
Let P be a topological property such that the unit interval [0, 1] is not P. If X is
projectively P then X is an nCM-space.

Theorem (Bukovský, Reclaw, Repický, 1991)
Any wQN-space is an nCM-space.

Let X be a Polish space. A set A ⊆ X has strongly measure zero if for any sequence
{εn}∞n=0 of positive real numbers there is a sequence 〈An : n ∈ ω〉 of open sets such
that A ⊆

⋃
n∈ω An and diam(An) < εn for any n ∈ ω.

Lemma
Let X ,Y be Polish spaces, A ⊆ X and f : A→ Y . If f is uniformly continuous and A
has strong measure zero then f (A) has strong measure zero as well.

Theorem (Corazza, 1989)

Any subset of a Polish space X with strong measure zero is an nUCM-space.
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Theorem (Just–Miller–Scheepers–Szeptycki, 1996)
If t = b then there exists a set of reals X ⊆ ω2 such that X is an S1(Γ, Γ)∗-space and
X is not σ-compact.

Theorem (Scheepers, 1999)
A topological space X is an S1(Γ, Γ)∗-space if and only if X is an S1(Γ, Γ)-space

Theorem (see e.g. Bukovský, 2011)
If t = b then there exists a set of reals X ⊆ ω2 of cardinality b such that X is
an S1(Γ, Γ)-space and X \ [ω]ω is not a wQN-space. Hence, X is not a λ-set.

Theorem

If t = c then there exists a set of reals X ⊆ ω2 of cardinality c such that X is
an S1(Γ, Γ)-space and X \ [ω]ω is not an nCM-space.
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A subset A of a topological space X is called perfectly meager if for any perfect set P ⊆ X the
intersection A ∩ P is meager in the subspace P.

A subset A of a perfectly normal topological space X has universal measure zero if for any finite
diffused Borel measure µ on X we have µ∗(A) = 0, i.e. µ(B) = 0 for some Borel B such that
A ⊆ B.

Theorem (Miller, 1983; Corazza, 1989)

There is a model of ZFC such that c = ℵ2 and the following holds:

the following statements are equivalent for A ⊆ R
1 |A| < c.
2 A is an nCM-set.
3 A is hereditarily nCM-set.
4 A is an nBM-set.
5 A is an nUCM-set.

any perfectly meager set is an nBM-set.

there is an nBM-set which is not perfectly meager set.

any universal measure zero set is an nBM-set.

there is an nBM-set which is not universal measure zero set.
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Theorem (Corazza, 1989)

There is a model of ZFC such that c = ℵ2 and the following holds:

the following statements are equivalent for A ⊆ R
1 |A| < c.
2 A is an nCM-set.
3 A is hereditarily nCM-set.
4 A is an nBM-set.
5 A is an nUCM-set.
6 A has strong measure zero (i.e. Generalized Borel Conjecture

holds).
any nUCM-set has universal measure zero.

there is universally measure zero set of cardinality c (which is not an nUCM-set).
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Theorem (Ciesielski, Shelah, 1999)

There is a model of ZFC such that c = ℵ2 and the following holds:

the following statements are equivalent for A ⊆ R
1 |A| < c.
2 A is an nCM-set.
3 A is hereditarily nCM-set.
4 A is an nBM-set.
5 A is an nUCM-set.

any nCM-set is perfectly meager.

there is perfectly meager set of cardinality c (which is not an nCM-set).
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Theorem (Corazza, 1989)
There is Marczewski null measurable set X ⊆ ω2 which is not an nUCM-space.

Theorem (Hilgers, 1937)

Any separable metric space of cardinality c is a continuous injective image of
a separable metric spaces of every non-negative dimension including infinite
dimension.

Corollary (Mazurkiewicz, Szpilrajn-Marczewski, 1937)

1 If there is a λ-set (separable metric) of cardinality c (e.g. if non(M) = c or if
b = c) then there is a λ-set of any dimension.

2 If there is a universal measure zero set of cardinality c (e.g. if non(N ) = c) then
there is a universal measure zero set of any dimension.
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Theorem (Miller, 1979)

The theory ZFC + “any uncountable set of reals has unbounded Borel rank” is
consistent relative to ZFC.

Theorem (Bukovský, Reclaw, Repický, 1991)
non(wQN-space) = b.

Theorem (Rothberger, 1941)
If CH holds true then there is concentrated set which is not nCM-set.

Theorem (Corazza, 1989)

If CH holds true then there is concentrated set on its subset which is not hereditarily
nCM-set.
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Thanks for Your attention!
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